3.413 \(\int \frac{1}{\sqrt{a+b x^3}} \, dx\)

Optimal. Leaf size=207 \[ \frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}} \]

[Out]

(2*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(
1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)]
, -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2
]*Sqrt[a + b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0184218, antiderivative size = 207, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {218} \[ \frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*x^3],x]

[Out]

(2*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(
1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)]
, -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2
]*Sqrt[a + b*x^3])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+b x^3}} \, dx &=\frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0058962, size = 46, normalized size = 0.22 \[ \frac{x \sqrt{\frac{b x^3}{a}+1} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};-\frac{b x^3}{a}\right )}{\sqrt{a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*x^3],x]

[Out]

(x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)])/Sqrt[a + b*x^3]

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 283, normalized size = 1.4 \begin{align*}{\frac{-{\frac{2\,i}{3}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-{b}^{2}a}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}\sqrt{{ \left ( x-{\frac{1}{b}\sqrt [3]{-{b}^{2}a}} \right ) \left ( -{\frac{3}{2\,b}\sqrt [3]{-{b}^{2}a}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ) ^{-1}}}\sqrt{{-i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-{b}^{2}a}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-{b}^{2}a}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}},\sqrt{{\frac{i\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a} \left ( -{\frac{3}{2\,b}\sqrt [3]{-{b}^{2}a}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{b{x}^{3}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a)^(1/2),x)

[Out]

-2/3*I*3^(1/2)/b*(-b^2*a)^(1/3)*(I*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*3^(1/2)*b/(-b^2*a)^
(1/3))^(1/2)*((x-1/b*(-b^2*a)^(1/3))/(-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)))^(1/2)*(-I*(x+1/2/
b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*3^(1/2)*b/(-b^2*a)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3
*3^(1/2)*(I*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*3^(1/2)*b/(-b^2*a)^(1/3))^(1/2),(I*3^(1/2)
/b*(-b^2*a)^(1/3)/(-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{b x^{3} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

Sympy [A]  time = 0.829803, size = 36, normalized size = 0.17 \begin{align*} \frac{x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt{a} \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a)**(1/2),x)

[Out]

x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a)*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(b*x^3 + a), x)